首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   655篇
  免费   27篇
  国内免费   1篇
化学   505篇
力学   3篇
数学   52篇
物理学   123篇
  2023年   7篇
  2022年   5篇
  2021年   11篇
  2020年   14篇
  2019年   22篇
  2018年   7篇
  2017年   9篇
  2016年   17篇
  2015年   29篇
  2014年   25篇
  2013年   41篇
  2012年   48篇
  2011年   37篇
  2010年   30篇
  2009年   24篇
  2008年   33篇
  2007年   35篇
  2006年   35篇
  2005年   27篇
  2004年   31篇
  2003年   18篇
  2002年   17篇
  2001年   7篇
  2000年   12篇
  1999年   8篇
  1998年   3篇
  1997年   9篇
  1996年   7篇
  1994年   6篇
  1993年   9篇
  1992年   6篇
  1991年   3篇
  1989年   8篇
  1988年   6篇
  1987年   4篇
  1985年   6篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1980年   8篇
  1978年   2篇
  1976年   3篇
  1975年   5篇
  1974年   4篇
  1973年   8篇
  1972年   4篇
  1971年   4篇
  1969年   3篇
  1962年   2篇
排序方式: 共有683条查询结果,搜索用时 31 毫秒
71.
Coupling electron‐hole (e‐ h+) and electron‐ion plasmas across a narrow potential barrier with a strong electric field provides an interface between the two plasma genres and a pathway to electronic and photonic device functionality. The magnitude of the electric field present in the sheath of a low temperature, nonequilibrium microplasma is sufficient to influence the band structure of a semiconductor region in immediate proximity to the solid‐gas phase interface. Optoelectronic devices demonstrated by leveraging this interaction are described here. A hybrid microplasma/semiconductor photodetector, having a Si cathode in the form of an inverted square pyramid encompassing a neon microplasma, exhibits a photosensitivity in the ~420–1100 nm region as high as 3.5 A/W. Direct tunneling of electrons into the collector and the Auger neutralization of ions arriving at the Si surface appear to be facilitated by an n ‐type inversion layer at the cathode surface resulting from bandbending by the microplasma sheath electric field. Recently, an npn plasma bipolar junction transistor (PBJT), in which a low temperature plasma serves as the collector in an otherwise Si device, has also been demonstrated. Having a measured small signal current gain hfe as large as 10, this phototransistor is capable of modulat‐ing and extinguishing the collector plasma with emitter‐base bias voltages <1 V. Electrons injected into the base when the emitter‐base junction is forward‐biased serve primarily to replace conduction band electrons lost to the collector plasma by secondary emission and ion‐enhanced field emission in which ions arriving at the base‐collector junction deform the electrostatic potential near the base surface, narrowing the potential barrier and thereby facilitating the tunneling of electrons into the collector. Of greatest significance, therefore, are the implications of active, plasma/solid state interfaces as a new frontier for plasma science. Specifically, the PBJT provides the first opportunity to control the electronic properties of a material at the boundary of, and interacting with, a plasma. By specifying the relative number densities of free (conduction band) and bound (valence band) electrons at the base‐collector interface, the PBJT's emitter‐base junction is able to dictate the rates of secondary electron emission (including Auger neutralization) at the semiconductor‐plasma interface, thereby offering the ability to vary at will the effective secondary electron emission coefficient for the base surface (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
72.
Linear response spectra of a driven intrinsic localized mode in a micromechanical array are measured as it approaches two fundamentally different kinds of bifurcation points. A linear phase mode associated with this autoresonant state softens in frequency and its amplitude grows as the upper frequency bifurcation point is approached, similar to the soft-mode kinetic transition for a single driven Duffing resonator. A lower frequency bifurcation point occurs when the four-wave-mixing partner of this same phase mode intercepts the top of the extended wave branch, initiating a second kinetic transition process.  相似文献   
73.
74.
In the present work, we describe a collection system for the off-line coupling of capillary isoelectric focusing (CIEF) with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. In this system, the capillary effluent is directly deposited in fractions onto the MALDI target via the use of a sheath liquid. The collected fractions are subsequently supplemented with matrix and further analysed by MALDI-TOF mass spectrometry for mass assignment. The experimental set-up includes a fiber optic based UV detector operating at 280 nm, which allows the study of the influence of the sheath liquid composition on the CIEF separation. The influence of the carrier ampholyte concentration on the protein MALDI spectra was also evaluated and the feasibility of the collection method was finally demonstrated with a mixture of four standard proteins.  相似文献   
75.
Some microorganisms perform anaerobic mineral respiration by reducing metal ions to metal nanoparticles, using peptide aggregates as medium for electron transfer (ET). Such a reaction type is investigated here with model peptides and silver as the metal. Surprisingly, Ag+ ions bound by peptides with histidine as the Ag+‐binding amino acid and tyrosine as photoinducible electron donor cannot be reduced to Ag nanoparticles (AgNPs) under ET conditions because the peptide prevents the aggregation of Ag atoms to form AgNPs. Only in the presence of chloride ions, which generate AgCl microcrystals in the peptide matrix, does the synthesis of AgNPs occur. The reaction starts with the formation of 100 nm Ag@AgCl/peptide nanocomposites which are cleaved into 15 nm AgNPs. This defined transformation from large nanoparticles into small ones is in contrast to the usually observed Ostwald ripening processes and can be followed in detail by studying time‐resolved UV/Vis spectra which exhibit an isosbestic point.  相似文献   
76.
In Campylobacterales and related ε-proteobacteria with N-linked glycosylation (NLG) pathways, free oligosaccharides (fOS) are released into the periplasmic space from lipid-linked precursors by the bacterial oligosaccharyltransferase (PglB). This hydrolysis results in the same molecular structure as the oligosaccharide that is transferred to a protein to be glycosylated. This allowed for the general elucidation of the fOS-branched structures and monosaccharides from a number of species using standard enrichment and mass spectrometry methods. To aid characterization of fOS, hydrazide chemistry has often been used for chemical modification of the reducing part of oligosaccharides resulting in better selectivity and sensitivity in mass spectrometry; however, the removal of the unreacted reagents used for the modification often causes the loss of the sample. Here, we develop a more robust method for fOS purification and characterize glycostructures using complementary tandem mass spectrometry (MS/MS) analysis. A cationic cysteine hydrazide derivative was synthesized to selectively isolate fOS from periplasmic fractions of bacteria. The cysteine hydrazide nicotinamide (Cyhn) probe possesses both thiol and cationic moieties. The former enables reversible conjugation to a thiol-activated solid support, while the latter improves the ionization signal during MS analysis. This enrichment was validated on the well-studied Campylobacter jejuni by identifying fOS from the periplasmic extracts. Using complementary MS/MS analysis, we approximated data of a known structure of the fOS from Campylobacter concisus. This versatile enrichment technique allows for the exploration of a diversity of protein glycosylation pathways.  相似文献   
77.
78.
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号